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ON THE DISTRIBUTION OF CYCLES TO CRACK INITIATION

by

Refik Soyer

C. ,

This report is a supplement to our previous report on the dis-
tribution of the number of cycles to crack initiation in aircraft
engine disks. The data analyzed in the previous report are reconsidered
here using a new approach. Thus, some degree of familiarity with the
first report is assumed. We first present a nonparametric approach for

estimating the survival (reliability) function. This technique is ap-
plied to the actual data, and comparisons are made with the survival
curves that are obtained assuming the lognormal, the Weibull, and the
inverse Gaussian distributions. An alternative informal goodness of fit
test for the inverse Gaussian distribution is also considered. Our con-

.- clusion is that estimated survival curves using the lognormal, the
* Weibull, and the inverse Gaussian distributions behave similarly,

whereas the survival curve based on a nonparametric approach is more

conservative as compared to the other curves.
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Institute for Reliability and Risk Analysis

ON THE DISTRIBUTION OF CYCLES TO CRACK INITIATION

by

Refik Soyer

1. OVERVIEW OF THE APPROACH USED

In our first report [Soyer (1982)], the problem of choosing a

distribution for the number of cycles to crack initiation was analyzed

using plotting techniques and some formal goodness of fit tests. The

techniques for the Weibull, the lognormal, and the inverse Gaussian dis-

tributions that were known to us at that time were discussed in detail.

In this report, the same problem, namely, the choice of distribu-

tion, is considered, but by using a different approach. A new method

:.'J for estimating the survival function, suggested by Proschan (1982), is

applied to the same data. The estimated survival function called "non-

parametric" survival function, is compared with the survival functions

obtained assuming different parametric life models.

In Section 3 an alternate informal goodness of fit test for the

inverse Gaussian distribution is discussed and applied to the data.
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2. THE NONPARAMETRIC APPROACH

In our first report, three life modelq, the Weibull, the lognor-

mal, and the inverse Gaussian, were analyzed.

The survival functions for these models are of the following forms.

The Weibull model

F(x) = exp, x 0 , ,6 > 0 . (2.1)

The lognormal model
(x) 1 - p ai , x > 0 , .,a > 0 , (2.2)

where 0(-) denotes the cumulative distribution function of the stan-

dard normal.

The inverse Gaussian model

F(x) = 1 - ,C (7/xT [(x/,,)-l]) + e2X/p ) C- / [l+(x)1J

or

W = C X7- [l-(x/p)]) - e2X/, 0 C- Ar/ [l+(x/)]) . (2.3)

To estimate the survival function, the parameters of the assumed

distribution are estimated from the data, and the estimated values

plugged in to the above equations.

The maximum likelihood estimates of the parameters of the models

are given below.

The Weibull Model. Estimation of parameters 8 and 6 using the

maximum likelihood method requires the solution of the following equa-

tions:

N
0 [-wI6 + (1(xi16) (2.4)
*=l

N
0 1(l/3) + Zn(xi/6) - (x/6) Zn(xi/6)] . (2.5)• i= 1
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These equations are solved for 6 and 8 by using an iterative proce-

dure and the estimates 6 and a are obtained.

The Lognormal Model. The maximum likelihood estimates of p and

2
a are:

N

N Yii=l

N 2 ] N 2 (2.6)
[ (Y.) N Y

^2 _i=l 1 i1 l
N

where Y. = n X.1 1

The Inverse Gaussian Model. The maximum likelihood estimates are:

N^ l 1 x.=-
SINi=l

SI.

(2.7)
i-l=i xF

N ~ X.

2.1 Nonparametric Estimation

In a recent paper, Proschan presents a method for estimating the

survival function. The method is applicable to both censored and uncen-

sored life data.

The method first estimates the average "failure rate" on each

*interval between successive failures. Then a survival function is ob-

tained for each interval, and the separate pieces are joined to form a

continuous function. The continuous function gives the estimated values

of the survival function, including the point at which last failure is

observed. It does not provide any estimate of the survival function

beyond the last observed failure.

-k.
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The failure rate, ff(x) , is defined

TV (x) f(x) = f(x)
1x - F(x)

where F(x) is the distribution function of the random variable X

the time to failure (or cycles to failure), and f(x) is its probability

density function.

The failure rate has a probabilistic interpretation, namely,

w(x)dx represents the probability that a device of age x will fail in

the interval (x, x+dx) [see Mann, Schafer, and Singpurwalla (1974)].

In Proschan (1982), an estimate of the failure rate in the inter-

val (z zi , where z. and z denote the time of the ith and

(i-l)st observed failures, is given as

-, = 1(2.8)
i observed total time on test

For our purposes, the definition of total time on test will be given

for the case of uncensored samples. In Proschan, it is defined for the

general case, where the withdrawals are taken into account.

For uncensored data, the observed total time on test is defined as:

TTOT = (z. - z ) + (N-i)(z. - z i-1)
(2.9)

= (N-i+l)(z - zi I  , 0 = 0

where N denotes the number of items on test.

By using (2.8) the failure rates on successive intervals can be

estimated. Once all the estimates are obtained, we can use F , the

estimator of the survival function given by Proschan (1982) as

'V

S.,,. .

"', . . .. .- - -. . . •" , " " "- .. " -" " , . .''- - ." ".""' " ' ' -.S S "4 " - ;
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exp{-r 1x}• 0 < x <

exp{-[Tirz 1 + T 2 (x-zl)]} , zI < x < z2
F= exp{-[ iz I + T2 (z2 -zI) + ... + T^i(z.i - zi I + ri+l(X-Z

z. < x < " i =1

(2.10)

As stated before, there is no estimator for x > zN

2.2 Application of the Method

In this section the results of Section 2.1 are applied to the

data presented in Tables A.1 and A.2 of the Appendix and the nonparamet-

ric survival function is estimated. The nonparametric survival function

is then compared with the survival functions estimated assuming different

life models.

2.2.1 Analysis of the first set of data

The nonparametric estimation method is applied to the data pre-

sented in Table A.l. The application of Equation (2.8) to successive

intervals (0,zl], (Zlpz 2 , ..., (z5,z6] gives us the estimates of the

failure rate on each interval. The estimated failure rates, r.'s
1

i = 1,2,...,6 , are presented in Table 1. The estimate of the survival

function, F , is obtained using Equation (2.10). The estimated survival

function, F , is presented in Figure 1.

A comparison of the nonparametric survival function with the

survival functions obtained from different life models is a way of

checking the appropriateness of the life model assumed.

.' .. . . . . . . % . .- . . .• . -. .. ... - -.. . . .- , . . . - . . -.- . - ' . ., . - ' - .- - , .
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Table 1: Estimated Failure Rates

Flight Hours to Failure Estimated Failure Rate Failure Rate Interval
z. i z z.]

780 0.00021 (0, 780)

820 0.00500 (780, 8201

K. 910 0.00278 (820, 9101

950 0.00833 (910, 950]

1050 0.02000 (950, 10501

* The estimation of the survival functions assuming different life

models has already been discussed. The maximum likelihood estimates of

the parameters of the models and the estimated survival functions are

presented in Tables 2 and 3, respectively.

4. . The comparison of the columns of Table 3 shows that the lognormal

(column 3) and the inverse Gaussian (column 4) survival functions behave

similarly, whereas the Weibull survival function (column 2) differs

slightly from the other two. A comparison of these three models with

the nonparametric survival function is made in Figures 2 and 3. An

*_ inspection of the figures indicates that the three models seem equally

Table 2: Maximum Likelihood Estimates of the
Parameters of the Weibull, the Lognormal, and

the Inverse Gaussian Distributions

Weibull Lognormal Inverse Gaussian

= 10.54 p = 6.83 p = 926.67

6 972.93 0.013 , 72256.10

,..- ., .-,.---- ' --.- - " - ".. "d:-v , . ..~*
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Table 3: Survival Functions for
the Weibull, the Lognormal, and

the Inverse Gaussian Distribution

(1) (2) (3) (4)

X F(X) F(X)LN F(X)IG

500 1.00 1.00 1.00

550 0.99 1.00 1.00

600 0.99 0.99 0.99

650 0.98 0.99 0.99

'.700 0.97 0.99 0.99

750 0.94 0.96 0.97

800 0.88 0.90 0.90

850 0.79 0.77 0.78

900 0.64 0.59 0.60

950 0.46 0.41 0.41

1000 0.26 0.24 0.25

1050 0.11 0.13 0.14

appropriate for describing the data and that the nonparametric model is

more conservative than the others.

2.2.2 Analysis of the second set of data

The data which will be analyzed in this section are presented

in Table A.2 of the Appendix. The nonparametric estimation procedure is

applied to the data. The estimated failure rates, the iT.' s are

p.' presented in Table 4.

I 5* *. ..
.

,. 5. .
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Table 4: Estimated Failure Rates

Cycles to Failure Estimated Failure Rate Failure Rate Interval
Z 1 (Z i-l' i]

1066 3.00005 (0, 1066]

1078 0.00556 (1066, 10781

1100 0.00324 (1078, 11001

1188 0.00087 (1100, 1188]

1214 0.00321 (1188, 12141

1240 0.00349 (1214, 1240]

1310 0.00143 (1240, 1310]

1416 0.00105 (1310, 14161

1459 0.00291 (1416, 14591

1624 0.00087 (1459, 16241

1660 0.00463 (1624, 16601

1670 0.02000 (1660, 16701

1679 0.02778 (1670, 1679]

1706 0.01235 (1679, 17061

1738 0.01563 (1706, 1738]

1780 0.02381 (1738, 17801

The nonparametric survival function for these data is presented

in Figure 4.

The maximum likelihood estimates of the parameters of the three

life models and their estimated survival functions are presented in

Tables 5 and 6, respectively.
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Table 5: Maximum Likelihood Estimates of the
Parameters of the Weibull, the Lognormal,

and the Inverse Gaussian Distributions

Weibull Lognormal Inverse Gaussian

= 6.71 p = 7.25 p = 1433

= 1539.60 &2 = 0.033 = 42983

Table 6: Survival Functions for
the Weibull, the Lognormal, and

the Inverse Gaussian Distributions

(1) (2) (3) (4)

X F(x) P) LNIG

500 1.00 1.00 1.00

600 0.99 1.00 1.00

700 0.99 1.00 1.00

800 0.98 1.00 1.00

900 0.97 0.99 0.99

000 0.95 0.97 0.97

1100 0.90 0.91 0.92

1200 0.83 0.81 0.83

1300 0.72 0.67 0.70

1400 0.59 0.51 0.54

1500 0.43 0.36 0.40

1600 0.27 0.24 0.26

1700 0.14 0.15 0.17

1750 0.09 0.11 0.13

.................................,.......,,.... .. ." .... '-.'.. . '..-2°
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The comparison of the columns of Table 6 shows results similar

to those obtained in Section 2.2.1. A comparison of the life models

with the nonparametric survival function is made in Figures 5 and 6.

These two figures show that the three life models behave similarly and

that the nonparametric model is initially more conservative than the

others.

3. ANOTHER INFORMAL GOODNESS-OF-FIT TEST
FOR THE INVERSE GAUSSIAN MODEL

In our first report, a distribution-free Kolmogorov-Smirnov

I test, assuming the parameters were known, was used to test for goodness

of fit for the inverse Gaussian distribution. It was stated there that

a formal goodness of fit test for this distribution was not known.

However, some properties of the inverse Gaussian distribution and its

relation with the normal distribution suggest the possibility of using

the formal goodness-of-fit tests for the normal distribution, if certain

conditions are satisfied.

3.1 Derivation of Inverse Gaussian Distribution

The derivation of inverse Gaussian distribution is discussed in

detail in Chhikara and Folks (1974).

If a random variable X has an inverse Gaussian distribution,

then its density function is

1/2 exp - x > 0 (3.1).[2 2V x

If Y is another random variable, such that

4
N.bp*N* **a *, 4* .- . 4~ *, ~ ~ - -\
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Y= /~(x(3.2)

then the density of Y can be obtained as:

g(y;A/P)= 1 e-y / 2 (3.3)[ 4\/j+y 2  2r /2

where - < y < .

As Chhikara and Folks (1975) state, the distribution function of

Y is:

F(y) = /1(y)+e2AI l 4 1 4/1J+y2( y + e,4 1 ( 3 .4 )

where 4(.) denotes the standard normal distribution function. We note

that if A/V - , then (3.4) becomes the standard normal distribution

function. The transformation (3.2) is one-to-one; therefore, the

survival function of X can be obtained as in (2.3).

Thus, if the ratio X/i gets large, we can use some goodness

" of fit tests that are available for the normal distribution.

3.2 Application to the Data

For the first set of data which was analyzed in Section 2.2.1,

the maximum likelihood estimates of X and p were presented in Table

2. For this data set the ratio X/p is approximately equal to 78. For

this value, the term 1D (-4X/p +y2 - 0 in (3.4) and the distribu-

tion function of Y becomes 4(y) . Thus, we can use one of the good-

ness of fit tests for the normal distribution.

The Anderson-Darling goodness-of-fit test has the statistic

A 2 = (2i-1) [Zn F(xi + n n - n.A !F'+ ~ n n
(1=1l

a..

a,.- ' ¢%Y ' " : *'' . " t" '' . ,, ,,' .'".-: '
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For the first set of data the test statistic is computed as 2 0.33

which requires the acceptance of the null hypothesis that the data are

from the inverse Gaussian distribution.

For the second set of data which was analyzed in Section 2.2.2,

the ratio X/p is approximately equal to 30. For this value,

' (-_4_/_+y 2) - 0 in (3.4) and the distribution function of Y becomes

standard normal. Thus, we can use the Anderson-Darling test for the
2

second set of data. The test statistic is computed as A = 0.76

which requires the acceptance of the null hypothesis that the sample is

from the inverse Gaussian distribution.

4. CONCLUSION

The application of the nonparametric estimation approach to the

- two data sets indicates that the nonparametric model behaves more con-

servatively than the parametric life models considered in the analysis.

The Weibull, lognormal, and inverse Gaussian models behave similarly and

therefore they are equally appropriate as life models.

The results obtained in Section 3 indicate that the formal good-

ness of fit tests for the normal distribution can be used for the in-

*. verse Gaussian model if certain conditions are satisfied.

On the basis of the presenc analysis, it can be concluded that the
".

nonparametric model which behaves more conservatively than the others may

be considered as an alternative model for describing the distribution of

the number of cycles to crack initiation.

V.4
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APPENDIX

TABLES

TABLE A.1

CRACK INITIATION IN 10TH COMPRESSOR DISK

Disk Sawtooth Equivalent
-. ..*-Number Cycles Flight Hours

. ~.. 1 1275 1050

2 1150 950

3 1000 820

4 1270 1050

5 950 780

- 6 1100 910

20
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* *-~TABLE A.2

CYCLES TO CRACK INITIATION
IN BOLT-HOLES

Bolt-hole Sawtooth
Number Cycles

1 1214

2 1188

3 1240

4 1078

5 1066

*6 1100

-~7 1670

8 1660

9 1679

*10 1310

11 1459

12 1624

13 1738

14 1706

015 1416

16 1780

%0
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